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• The framework allows for assessing cli-
mate impact on forest cover more pre-
cisely.

• Human-induced land cover change was
excluded from assessing climate impact
on forest cover.

• Climate-induced spatiotemporal varia-
tions of forest EVI on different scales
were analyzed.

• Minimum temperature and precipita-
tion are two key control factors for for-
est EVI.

• Quantitative relationship among forest
EVI and climatic factors is established.
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In this study, we propose to assess climate impact on forest cover (represented by EVI) atmultiple scales in areas
undergoing substantial land cover change, using Landsat imagery with human-induced land cover change effect
excluded. Taking the Qingliu River catchment located in a subtropical humid monsoon area in China as a case
study, the results indicate that EVI increases significantly (p b 0.01) during 1989–2014 with a magnitude of
0.026/decade. Spatial distribution of EVI is distinct in summer and growing season. Temperature and precipita-
tion show high partial correlations with EVI, with better partial correlation found between EVI and temperature.
Their partial correlations with EVI onmonthly scale are higher than those on annual scale. Besides, precipitation
and pan evaporation show accumulative lag effects (4months) on forest EVI, while temperature has no lag effect.
Finally, an empirical formula is established to quantify the relationship among EVI and its main driving factors
(temperature and precipitation) by considering the precipitation threshold (200 mm). The findings should pro-
vide scientific supports for local forest management and ecosystem services, and should also support the hydro-
logical effect assessment of vegetation cover change under climate change for the study area.
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1. Introduction

1.1. Remote sensing of vegetation cover change

Climate is themost primary control factor for vegetation distribution
(Sykes, 2009; Gao et al., 2016). Investigating the impact of climate
change on vegetation cover dynamics is of great importance for global
and regional ecosystem assessment and management (Walther et al.,
2002; Sun et al., 2015; Jiang et al., 2017). Numerous studies concerning
the effect of climate change on vegetation cover have shown that due to
the spatiotemporal variations in climate change and eco-environmental
conditions, the change patterns of vegetation cover are different among
different regions (Hou et al., 2015). For instance, Wang et al. (2011)
found that the spring vegetation greening trends were reversed be-
tween northwest and northeast in North America. Climatic factors
(e.g., temperature, precipitation, relative humidity, photosynthetically
active radiation (PAR)) especially for temperature and precipitation
have been found to be significant driving factors for vegetation cover
change (Zhou et al., 2015;Wen et al., 2017; Fang et al., 2018). However,
the relationship between climatic factors and EVI may differ over differ-
ent regions and times. For example, Sun et al. (2015) reported that sig-
nificant and positive partial correlations between temperature and the
NDVI were found in the central and southeastern Loess Plateau, while
a negative impact of vegetation degradation due to climatewarming oc-
curred in the northwestern Loess Plateau. Wen et al. (2017) found that
rising temperaturewas the primary contributor of NDVI increase before
1990s, and decreasing precipitation was the main climatic factor
Fig. 1. Location, elevation, and distribution of hydro-meteorologi
influencing the mid-western farmland areas' NDVI variations after
1990s.

Traditional way to quantifying vegetation cover mostly depends
on field survey, which is advanced in high accuracy but time and
human resources consuming (Wen et al., 2010). With the develop-
ment of remote sensing, satellites provide valuable data resources
for assessing land cover change (Giri et al., 2007; Bartholomé and
Belward, 2005). To date, many satellite sensors have been used to
detect land cover change over large areas, such as Moderate-
Resolution Imaging Spectroradiometer (MODIS, 250 m/500 m),
the System Pour I'Ovservation de la Terre (SPOT, 1 km), Sea-
ViewingWide Field-of-View Sensor (SeaWiFS, 4.63 km) and the Ad-
vanced Very High Resolution Radiometer (AVHRR, 8 km) (Lamchin
et al., 2017; Zhang et al., 2018;). However, these sensors are in
coarse resolution, failing to capture the finer and more local charac-
teristics of vegetation cover change, which are highly needed in
local ecosystem services and assessment especially for urban or
suburban areas.

Alternatively, Landsat (including Landsat 5, 7 and 8) provides an
ideal option with a fine spatial resolution of 30 m and temporal resolu-
tion of 16 days. It allows for monitoring human-included land cover
change (Huang et al., 2010; Zhu et al., 2016) and evaluating the vegeta-
tion cover change on local or regional scale (Zhu et al., 2016; Jönsson
et al., 2018; Restrepo et al., 2017).

In remote sensing-based vegetation cover study, various vege-
tation indices (VIs) have been proposed to represent vegetation
cover. Particularly, normalized difference vegetation index
cal stations in the Qingliu River catchment, southeast China.



Fig. 2. Flowchart of the framework.
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(NDVI) and enhanced vegetation index (EVI) are widely used due
to their high correlation with the amount of chlorophyll, vegetation
leaf area, and photosynthetic capacity (Carlson and Ripley, 1997;
Olofsson et al., 2007). In contract with NDVI, EVI is generally
more robust to the influences of atmosphere and soil background
and is less sensitive to saturation problems over dense canopies
(Huete et al., 2002). In addition, comparing the consistency of
data from Landsat 8 with Landsat 5 and 7, Zhu et al. (2016) found
that the EVI values were less biased than that of NDVI and sug-
gested use EVI data for vegetation change analysis without further
calibration. Therefore, EVI is selected to represent forest coverage
in this study.

1.2. The impacts of human activities and climate change on vegetation
cover

Land cover change can be broadly attributed to climate change and
human activities (such as deforestation, urban expansion). In recent de-
cades, increasingly intensive human activities have disturbed land cover
dramatically and even become the dominant driver of land cover
change especially for urban or suburban areas (Vitousek et al., 1997;
Yin et al., 2018). In this case, land cover change induced by human activ-
ities may either accelerate or counteract the response of vegetation to
climate change (Theurillat and Guisan, 2001). Thereby, the response
of vegetation cover to climate changemay be very different if the effects
of human activities are not excluded (Zhu et al., 2016; Shen et al., 2018).
However, most studies on the impact of climate change on vegetation
cover variation assume that there is no land cover change or a little
change occurs but can be ignored (Luo and Yu, 2017). Apparently, the
above assumption fails to hold in the real world especially for long
time intervals, or for areas that undergo substantial land cover changes
(Restrepo et al., 2017). Therefore, the effects of land cover change in-
duced by human activities should be excluded when we assess the im-
pact of climate change on vegetation variation.

How to achieve the objective? One option is identifying areas where
are consistently covered by the same type of vegetation. To tackle this
problem, Zhu and Woodcock (2014) proposed a robust algorithm
named Continuous Change Detection and Classification (CCDC) of land
cover by using all available Landsat data. It allows for producing land
cover classification result at any time in the given study period. The
CCDC algorithm has been adopted in a new U.S. Geological Survey
(USGS) science initiative named Land Change Monitoring Assessment
and Projection (LCMAP, 2018).

In this study, based on all available Landsat 5, 7 and 8 imageries,
the CCDC algorithm is applied to get the continuous classification
of land cover in the Qingliu River catchment during 1989–2014. Sub-
sequently, the pixels that are permanently covered by forest over the
study period are identified for further study. It is important to note
that since farmland are substantially impacted by human activities
such as harvesting or feeding, only forest cover is focused in this
study.

1.3. Aims and objectives

This paper aims to assess the impact of climate change on forest
cover with human-induced land cover change effect excluded. Taking
the Qingliu River catchment, which undergoes substantial land use
changes, as a case study, the objectives are as follows:

1) Todetect land cover change and produce continuous land cover clas-
sification for the study area;

2) To analyze the spatial distribution and temporal trend character-
istics of forest cover driven by climate change on different scales;

3) To explore the relationships among forest coverage (represented by
EVI) and climatic factors.

2. Study area and data acquisition

2.1. Study area

The Qingliu River is a secondary-order tributary of the downstream
of Yangze River, flowing towards southeast and joining in Chu River at



Fig. 3. Land cover classification of the Qingliu River catchment in January 1989 (a), January 2001 (b), and January 2015 (c), respectively.

735Q. Yang et al. / Science of the Total Environment 659 (2019) 732–745
Chuzhou station. The Qingliu River catchment (32.22°–32.67° N,
117.99°–118.40° E, Fig. 1) belongs to transition zone (31.4°N and
35.2°N) between Southern China and Northern China, where there ex-
ists complex relationship between vegetation and climate change (Luo
and Yu, 2017). Located in the subtropical humid monsoon region, the
catchment covers a drainage area of 1318 km2, receives a mean annual
precipitation of about 1100mm and is subject to amean temperature of
15.2 °C. The elevation of the catchment ranges from−12m to 339m, is
a presentative area for southeastern low mountains and hills in China
(Yang et al., 2019).

The land cover in the study area is dominated by farmland and for-
est. Only a small proportion of grassland has been noted. But in recent
decades, the catchment undergoes substantial land cover changes
(mainly shifting from farmland and forest to residential area) due to
the rapid development of society and economy (Liu et al., 2010; Zhang
and Pu, 2008).

2.2. Data acquisition

In seasonal variation analysis, data in winter referring to January
and February in the next year are needed. Hence, data covering the
period of December 1988–February 2015 are collected and analyzed
in this study.

2.2.1. Climatic data
The daily data of mean temperature (Tmean), minimum tempera-

ture (Tmin), maximum temperature (Tmax), and precipitation ranging
from December 1988 to February 2015 for 20 meteorological stations
(Fig. 1, 1 stationwithin the catchment and 19 stations around the catch-
ment) are acquired from the China Meteorological Administration
(CMA, http://data.cma.cn/). Since a large proportion of daily pan-
evaporation data provided by CMA are missing, monthly pan-
evaporation in the study area is collected from Anhui Meteorological
Bureau. Monthly precipitation data of 7 rain gauges were provided by
Anhui Hydrology Bureau.
Table 1
Proportion of each land cover type over the Qingliu River catchment in January 1989, Jan-
uary 2011, and February 2015, respectively.

Forest Farmland Residential area Water body Bare land

Jan. 1989 53.48% 36.44% 5.18% 3.90% 1.00%
Jan. 2001 52.69% 35.01% 7.53% 3.96% 0.82%
Jan. 2015 53.32% 34.01% 7.55% 4.42% 0.70%
2.2.2. Landsat data, EVI data and DEM
All available Level 1 Terrain (L1T) Landsat 5, 7 and 8 images of the

study area with cloud cover b90% from December 1988 to February
2015 are downloaded from United States Geological Survey (USGS,
https://earthexplorer.usgs.gov/). The total number of all available
Landsat images from Thematic Mapper (TM) on Landsat 5, Enhanced
Thematic Mapper Plus (ETM+) on Landsat7, and Operational Land Im-
ager (OLI) on Landsat 8 is 485 and the number of images in each year
from 1989 to 2014 is listed in Table S1 in supplement files. Since before
2000 there is only Landsat5 (TM) while after 2000 there are both
Landsat5 (TM) and Landsat7 (ETM), therefore the quantity of images
before 2000 is less than that after 2000.

Correspondingly, EVI images covering the same time period are also
downloaded from USGS (https://earthexplorer.usgs.gov/). These im-
ages have been corrected by calibration, view geometry, volcanic aero-
sols, and other effects that have no relation with vegetation change
(Pinzon and Tucker, 2014). The frequency by month of all available
EVI datasets for the study area is listed in Table S2 in supplement files.
The months during the growing season (April–October) have slightly
more images than the other months.

DEM data with a spatial resolution of 30∗30m are downloaded from
Geospatial Data Cloud in China (http://www.gscloud.cn/). High defini-
tion images of GF-1 with a resolution of 2∗2 m are provided by China
Center for Resources Satellite Data and Application.

3. Methodology

3.1. Overview of the framework

Fig. 2 illustrates theflowchart of the framework,which consists of two
modules: data preprocess and data analysis. Specifically, data preprocess
includes three parts, namely land cover dynamics exploration (data pre-
process 1 in Fig. 2, refer to Section 3.2), EVI time series construction of the
forest pixels without land cover change (data preprocess 2 in Fig. 2, refer
to Section 3.3), and climatic data interpolation (data preprocess 3 in Fig. 2,
refer to Section 3.4). Data analysis covers two tasks: (1) spatiotemporal
variation analysis of forest EVI; and (2) Relationship analysis among EVI
and climatic factors. The related methods and techniques used in data
analysis are introduced in Section 3.5.

3.2. Exploration of land cover dynamics

The Continuous Change Detection and Classification (CCDC) algo-
rithm, originally designed for Landsat data, is a robust methodology

http://data.cma.cn
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
http://www.gscloud.cn


Fig. 4. Land cover change map for the Qingliu River catchment between 1989 and 2014 relative to land cover in December 1988.
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for identifyingwhen and how a land surface pixel changes through time
by using all available Landsat imagery (Zhu and Woodcock, 2014).

The CCDC algorithm mainly consists of four steps: (1) image pre-
processing, where atmospheric correction is operated; clouds,
clouds shadows, and snow are initially masked using F-mask algo-
rithm (Zhu et al., 2015). (2) Time series modelling (Eq. (1)), aiming
to capture the characteristics of intra-annual change, gradual inter-
annual change and abrupt change of land surface. (3) Change detec-
tion, which compares predictions mathematically to observations to
determine whether change has occurred at any given time. (4) Land
cover classification, performed by using the Random Forest Classifier
(RFC) due to its high accuracy and computational efficiency
(Rodriguez-Galiano et al., 2012).
Fig. 5. Inter-annual change trends of seasonal and annual EVI in the Qingliu River
catchment during 1989 and 2014.
ρ̂ i; xð ÞOLS ¼ a0;1 þ a1;i cos
2π
T

x þ b1;i sin
2π
T

x þ c1;ix ð1Þ
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�
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where x: Julian date; i: the ith Landsat Band; T: number of days per
year (T = 365); a0, 1: coefficient for overall value for the ith Landsat
Band; a1, i, b1, i: coefficient for intra-annual change for the ith Landsat
Band; c1, i: coefficient for inter-annual change for the ith Landsat
Band; τk∗: The kth break points; ρ̂ði; xÞOLS: predicted value for the ith
Landsat Band at Julian date x.
Fig. 6. Box-whisker of intra-annual change of EVI in the Qingliu River catchment over the
period of 1989 and 2014. The bottom and top of the box are the first and third quartiles,
and the band inside the box is the median. The “whisker” above and below the box
represents the maximum and minimum of all data. The same hereafter.



Fig. 7. Change detection of mean annual temperature (a) and EVI (b) during 1989 and
2014. UF and UB present the forward trend and backward trend line of the data series.
UF N 0 and UF b 0 indicate increasing trend and decreasing trend, respectively.
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In this study, CCDC algorithm is applied for continuous classification
of land cover for the Qingliu River catchment during December 1988
and February 2015. Briefly, land cover in the Qingliu River catchment
is classified into five types, namely water body, forest, farmland, resi-
dential area, and bare land. In total 4215 sample points covering five
types of land cover were identified (Fig. S1 in the supplement files)
based on filed survey, the high definition image of GF-1 and the cloud-
free Landsat images. Half of the sample points were used for training
and another half were used for validation in the Random Forest
Classifier.
Table 2
Trend statistics of seasonal and annual EVI in the Qingliu River catchment.

1989–2000 2001–2014 1989–2014

Slope (/10a) Slope (/10a) Slope(/10a) ZMK

Spring −0.011 0.038** 0.036** 4.85**
Summer −0.001 0.031** 0.031** 4.72**
Autumn −0.019 0.035** 0.017** 2.95**
Winter −0.004 0.019** 0.022** 4.72**
Growing season −0.011 0.037** 0.030** 4.63**
Annual-mean −0.011 0.031** 0.026** 4.81**
Annual-max −0.017 0.032* 0.031** 3.92**

Note: ** and * mean significance levels (α) of 0.01 and 0.05, respectively. The correspond-
ing values of Z1−α/2 are 2.32 and 1.96, respectively. Positive ZMK indicates increasing trend,
while negative ZMK indicates decreasing trends. If |ZMK| N Z1−α/2, then a significant trend
exists in the time series.

Fig. 8. Change trend of seasonal EVI on pixel scale in the Qingliu River catchment
based on simple linear trend method over three phases (1989–2000, 2001–2014,
and 1989–2014).
3.3. Construction of continuous EVI time series

Based on the continuous land cover classification results, pixels per-
manently covered by forest over the period of Dec. 1988–Feb. 2015 are
identified as our research objects. Forest pixels which experience
human induced land cover change (including transition from forest to
other land cover types and from other land cover types to forest) are
left out of our study objects. In this manner, the influences of human-
induced land cover change on forest coverage can be removed, which



Table 3
Statistics of individual change rates of EVI in the Qingliu River catchment.

−2%–1%/a −1%–0/a 0–1%/a 1%–2%/a

Spring 1989–2000 0.2% 66.0% 33.7% 0.1%
2001–2014 0.1% 10.5% 85.7% 3.7%
1989–2014 / 3.9% 96.1% /

Summer 1989–2000 0.1% 53.2% 46.3% 0.4%
2001–2014 0.3% 14.4% 83.5% 1.8%
1989–2014 / 2.3% 97.7% /

Autumn 1989–2000 0.3% 77.2% 22.5% /
2001–2014 0.2% 14.4% 80.1% 5.3%
1989–2014 / 12.2% 87.8% /

Winter 1989–2000 / 56.8% 43.1% 0.1%
2001–2014 0.1% 22.9% 75.8% 1.2%
1989–2014 / 4.2% 95.8% /

Growing season 1989–2000 0.2% 66.2% 33.5% 0.1%
2001–2014 0.2% 10.0% 85.9% 3.9%
1989–2014 / 3.6% 96.4% /

Annual 1989–2000 0.1% 68.0% 31.8% 0.1%
2001–2014 0.1% 12.5% 85.2% 2.2%
1989–2014 / 3.7% 96.3% /

Note: The total number of identified forest pixel is 496,559. /a means per year.
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means the variations of these forest pixels are mainly derived from cli-
mate change.

For each identified forest pixel, the EVI time series can be extracted
from all the available EVI imagery. To avoid the cloud and snow effects,
Fig. 9. Significance of EVI change on pixel scale in the Qingliu River catchment. (a)–(c): Signific
(f) Significance of change of EVI in growing season during 1989–2000, 2001–2014, 1989–2014
pixels with cloud, cloud shadows and snow are furthermasked by using
F-mask algorithm (Zhu et al., 2015) from individual EVI images. As a re-
sult, cloud free EVI time series are constructed for each identified pixel.
Due to the fact that EVI imagery is not always at 16-day interval, a time
series model (Eq. (1)) proposed by Zhu and Woodcock (2014), which
takes the seasonal variation feature of EVI into account, is applied to
fit available EVI to get continuous EVI data. Finally, monthly EVI time se-
ries for each identified pixel are constructed.

3.4. Interpolation of climatic data based on ANUSPLIN

To analyze the correlation between forest EVI and climatic variables
on pixel scale, climatic data with the same spatial resolution of EVI need
to be interpolated. ANUSPLIN, as a professional interpolation software
for meteorology data, has been widely used worldwide (Hutchinson
and Xu, 2004; Tan et al., 2018). The spline interpolation method from
ANUSPLIN has shown its superiority onmonthly climate data interpola-
tion in China (Hong et al., 2010). Hence, based on DEM (30∗30 m) and
the climatic data at 20 meteorological stations (Fig. 1), ANUSPLIN
(Hutchinson and Xu, 2004) is applied to interpolate climatic variables
(i.e. precipitation, Tmean, Tmin, Tmax) at a pixel size of 30 m for
Anhui province on monthly and annual scales, respectively. As a result,
monthly temperature and precipitation during December 1988 and
February 2015 and annual temperature and precipitation during
1989–2014 on pixel scale are constructed.
ance of annual EVI change during 1989–2000, 2001–2014, 1989–2014, respectively; (d)–
, respectively.



Fig. 10. Spatial distribution of annual and seasonal EVI in the Qingliu River catchment over the period of 1989 and 2014.

739Q. Yang et al. / Science of the Total Environment 659 (2019) 732–745
3.5. Data analysis

3.5.1. Spatiotemporal variation analysis of forest EVI
Diverse methods of spatiotemporal variation analysis have been

proposed (Yang et al., 2017). In this study, to characterize the spatial
variation features of forest EVI, spatial heterogeneity of seasonal and an-
nual EVI over three different phases are displayed and compared. To
Fig. 11. Mean annual temperature and precipitation in t
analyze the temporal trends of forest EVI, a simple linear trend (SLT)
method and Mann-Kendall (MK) test method (Mann, 1945; Kendall,
1975) are selected. SLT method works well for areas where not under-
going substantial land cover change (Zhu et al., 2016). MK test is a ro-
bust non-parametric method that have been widely applied in
detectingmonotonic trends in climate, hydrology and vegetation cover-
age (Shadmani et al., 2012; Torres and Moisés, 2013; Zuo et al., 2016).
he Qingliu River catchment during 1989 and 2014.



Fig. 12. Inter-annual change trends of mean annual precipitation, pan evaporation (a) and
temperature (b) for the Qingliu River catchment during 1989 and 2014.
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3.5.2. Relationship analysis among EVI and climatic factors
To evaluate the correlation among climatic factors and forest EVI,

partial correlation analysis is selected, which measures the strength of
a relationship between two variables while eliminating the effects of
correlated one or more control variables (Wu et al., 2015).

The partial correlation coefficients can be written as follows
(Eq. (2)):

rXY ∙Z ¼ rXY−rXZrYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r2XZ
� �

1−r2YZ
� �q ð2Þ

where rXY∙Z means the partial correlation between X and Y given a set of
n controlling variables Z = {Z1, Z2, …, Zn}. rXY, rXZ, rYZ represent for the
correlation coefficients between X and Y, X and Z, Y and Z, respectively.
In this study, X denotes forest EVI, Y denotes one of climatic factors
(temperature, precipitation, pan-evaporation), Z denote for another
two climatic factors.

Like the correlation coefficient, the partial correlation coefficient
(PCC) also ranges from −1 to 1. PCC with the value of −1 or 1 means
a perfect negative or positive correlation controlling for some variables
and PCC with the value of 0 conveys that there is no linear relationship
(Epskamp and Fried, 2018).

The partial correlations among EVI and climatic factor are ana-
lyzed on different spatial scales (pixel and catchment) and temporal
scales (monthly, seasonal and annual). Finally, their quantitative re-
lationship is established via least square method (Rehman et al.,
2017).
4. Results and discussion

4.1. Continuous change detection and classification of land cover in the
Qingliu River catchment

Based on all the available Landsat imagery in the study area and the
CCDC algorithm, the continuous changes of land surface are detected
and the dynamic land cover classifications during December 1988 and
February 2015 are generated.

Due to the continuity of the land cover classification, it is unrealistic
to show all the classification results and the associated accuracies.
Table S3 lists the mean accuracy of land cover classification in each
month during 1989–2014. It indicates that the overall mean accuracy
achieves over 90%, which provides quality assurance for the subsequent
analysis.

Taking the land cover in January 1989, January 2001, and January
2015 as examples, Fig. 3 and Table 1 show their corresponding classifi-
cation results. It is obvious that the residential area has expanded with
the development of economy and society in last 26 years, while farm
land and forest have been shrinking and aremainly replaced by residen-
tial areas.

Although Fig. 3 and Table 1 present land cover changes between Jan-
uary 1989 and January 2015, they cannot track and reveal the change
dynamics (e.g.when andwhere does the change happen). Alternatively,
Fig. 4 illustrates the land cover changes in each year during the period of
1989 and 2014 relative to December 1988. Different colors represent for
the changed pixels in different years. The “unchanged” bar in the legend
means the areas which have no use change occurred.

Based on the continuous land cover classification results, the statis-
tical data indicate that 28.1% of the study area undergoes land cover
change. Furthermore, compared with forest proportion in December
1988, 22.07% of the forest area has experienced land cover changes, in-
cluding both deforestation and reforestation byhuman activities. There-
fore, human-induced forest change should be excluded when studying
the impact of climate change on forest coverage variation. As a result,
herewe identify thepixels (with thenumber of 495,477)which are per-
manently covered by forest over the study period for further analysis.
The identified pixels account for 41.77% of the Qingliu River catchment
with the total number of pixels of 1,188,812.

4.2. Spatiotemporal variation of forest cover in the Qingliu River catchment

4.2.1. Temporal trend analysis of forest EVI

4.2.1.1. On catchment scale. To represent forest EVI level on catchment
scale, EVI of all identified forest pixels are averaged. Subsequently, the
inter-annual and intra-annual variations of the EVI are presented in
Figs. 5 and 6, respectively.

Fig. 5 illustrates the change trends of annual EVI (includingmean an-
nual andmaximum annual) and seasonal EVI in the Qingliu River catch-
ment during 1989 and 2014. In general, EVI increases and individual
change trends are consistent with each other. To evaluate the intra-
annual variation of EVI, box-whiskers plot was provided in Fig. 6,
where the median indicates the middle value, and the bottom and top
of the box characterize the variation. It can be found that EVI achieves
the highest value in July and lowest value in December and January.
The finding is consistent with seasonal features of vegetation
phenology.

Based on the Mann Kendall method, changes of mean annual tem-
perature and EVI were detected and the results are illustrated in Fig. 7.
It can be noted that temperature abruptly changed in 1994 and in-
creased significantly since 2000 (Fig. 7(a)), and EVI abruptly changed
in 2004 (Fig. 7(b)). It might because the effect of climate change is
lagged and accumulated on forest cover. To further investigate the cli-
mate impact on forest cover, we consequently separate the whole
study period into two segments by taking 2000 as the break point,



Fig. 13. Box-whisker of intra-annual change of pan evaporation (a), precipitation (b), and temperature (c) in the Qingliu River catchment during 1989 and 2014.
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namely 1989–2000 and 2001–2014. In addition, EVI exhibits distinct
seasonal characteristic. Thereby, we look into temporal change of EVI
from seasonal and annual levels over three phases (1989–2000;
2001–2014; 1989–2014) (Table 2). Here, spring refers to March to
May; summer refers to June to August; autumn refers to September to
November; winter refers to December, and January and February in
the second year; and growing season refers to April to October.

The statistical information about the change trends of EVI over dif-
ferent phases is presented in Table 2. It can be observed that both annual
and seasonal EVI increase significantly (p b 0.01, ZMK N 2.32) over the
entire study period, but decrease insignificantly during 1989–2000 (p
N 0.05) before increase significantly (p b 0.01) over the period of
2001–2014.

4.2.1.2. On pixel scale. For each identified pixel which is permanently
covered by forest, the simple linear trend (SLT) method is used on its
EVI time series data. Here, the slope coefficient represents the change
rate of EVI. Fig. 8 shows the spatial distribution of change rates of sea-
sonal EVI over three different phases across the Qingliu River catch-
ment. Statistical information of these changes is summarized in Table 3.

From Fig. 8 and Table 3, we can find key findings as follows: (1) EVI
degradation during 1989–2000 accounts for 68.1% (53.3%–77.5%), EVI



Table 4
Partial correlation coefficients among forest EVI and climatic variables on different time
scales over the catchment.

EVI-Pre EVI-Tmax EVI-Tmean EVI-Tmin EVI-Evp

Spring 0.233 0.203 0.262 0.222 0.192
Summer −0.053 0.583** 0.737** 0.766** −0.720**
Autumn −0.158 −0.029 0.008 0.049 −0.400
Winter −0.431* 0.133 0.104 0.107 −0.485*
Growing season 0.061 0.415* 0.523** 0.523** −0.354
Monthly 0.317 g** 0.739** 0.793** 0.798** 0.017
Annual −0.068 0.348 0.399 0.409* −0.368

Note: EVI: enhanced vegetation index; Pre: precipitation; Tmin: minimum temperature;
Tmean: averaged temperature; Tmax: maximum temperature; Evp: Pan evaporation. *
and ** represent significance levels of 0.05 and 0.01, respectively. PCC N 0 means positive
correlation between EVI and the climatic variables, while PCC b 0 indicates negative
correlation.

742 Q. Yang et al. / Science of the Total Environment 659 (2019) 732–745
increasing during 2001 and 2014 accounts for 87.4% (77.0%–89.8%), and
EVI increasing over the whole study period account for 96.3% (87.8%–
97.7%). These change trends on pixel scale are consistent with that
found on catchment scale. Furthermore, it indicates that the spatial dis-
tribution of EVI is largest during 1989–2000, followed by 2001–2014.
(2) No matter for increases or decrease, majority (over 90%) of the
change magnitude is around 1%/year. Pixels showing changes with
larger magnitude of 1–2%/year are much fewer or negligible. It can be
explained that since climate fluctuates gradually in certain extent,
thus forest cover driven by climate also varies in a relative small magni-
tude. (3) For each phase, the largest proportion of decreasing appears in
autumn or winter, while its largest proportion of increasing appears in
summer or spring. For instance, during 1989–2000, the largest propor-
tion of EVI degradation is in autumn with 77.2% and highest proportion
of EVI increasing is in springwith 85.7%. Thismight because forest starts
the growing season in spring and achieves highest EVI in summer.
While in autumn andwinter, the forest gets closer to the end of growing
season. The findings are consistentwith the phenological characteristics
of forest.

To investigate whether EVI change is significant or not, p-value gen-
erated from simple linear trend for pixel EVI over three different phases
is analyzed and visualized in Fig. 9. The upper part of Fig. 9 shows the
significance of annual EVI change while the bottom part of Fig. 9 repre-
sents the significance of EVI change in growing season. In general, we
can observe that annual and seasonal EVI in a large proportion (N80%)
of forest pixels change significantly. Taking growing seasonal EVI as an
example, 86.0% of the forest pixels change significantly (p b 0.05) during
1989–2000,while EVI changes very significantly during 1989–2014 and
Fig. 14. Lag effects of climatic factors on EVI. Acc/Avg (i, i = 2, 3, 4,…,12) represents the
accumulative precipitation and averaged temperature of i months.
2001–2014, accounting for 55.8% and 97.2%, respectively. More detailed
statistical information can be found in Table S4.

4.2.2. Spatial distribution of forest EVI
The spatial distribution of mean annual and seasonal EVI during

1989–2014 is illustrated in Fig. 10. In combination with river system
and DEM in Fig. 1, it can be noticed that most forest is distributed in
boundary regions (which are also river sources regions) or middle rib-
bon areas of hills. Hence, EVI spatial distribution is highly associated
with elevation. The spatial distribution of EVI differs on different sea-
sonal scales over different phases. For different seasons, substantial spa-
tial distribution can be observed in summer and growing season. Similar
findings can be found over another two phases (1989–2000 and
2001–2014), which can be found in Figs. S2 and S3 in supplement files.

4.3. Relationship among EVI and climatic factors on different scales

4.3.1. Spatial distribution and temporal variation of climatic factors
The spatial heterogeneities of mean annual temperature and precip-

itation in the study area over the years of 1989–2014 are illustrated in
Fig. 11. In comparison with DEM in Fig. 1, it can be noted that the
areas with low temperature, high precipitation and high elevation are
highly consistent with each other. These areas are mainly located in
northern, southern boundary or middle hills of the Qingliu river
catchment.

The temporal changes of mean annual precipitation, pan evapora-
tion and temperature (Tmean, Tmax, Tmin) during 1989–2014 are illus-
trated in Fig. 12. It indicates that both precipitation and pan evaporation
change non-significantly (p N 0.05, Fig. 12(a)), while temperature in-
creases significantly (p b 0.1, Fig. 12(b)). In addition, Fig. 13 presents
the box-whisker of intra-annual change of these climate variables.

4.3.2. Partial correlation analysis of EVI and climatic factors on catchment
scale

Partial correlation coefficients (PCCs) among EVI, precipitation, tem-
perature, and pan evaporation on catchment scale are summarized in
Table 4. It indicates that (1) For different temporal scales, the primary
climatic factors controlling EVI may differ. For instance, on summer,
growing season, monthly, and annual scales, minimum temperature
(Tmin) shows highest PCC with EVI, while on winter scales, pan evapo-
ration exhibits largest PCCwith EVI. However, in spring and autumn, no
climatic factors show significant correlation with EVI. The results imply
that pan evaporation is a primary control factor for forest cover in win-
ter, while minimum temperature plays important roles especially on
summer, monthly and annual scales. Furthermore, on monthly scale,
temperature and precipitation are two dominant factors affecting forest
cover. (2) For different climatic factors, their highest PCCswith EVI may
appear on different scales. For example, precipitation shows its highest
PCC (−0.434) with EVI on winter scale, temperature achieves the
highest PCCs (0.739–0.798) with EVI onmonthly scale, while pan evap-
oration exhibits the largest negative PCC (−0.720) with EVI on summer
scale. (3) PCCs among precipitation, temperature and EVI on monthly
scale are higher than those on annual scale.

To investigate the lag effect of climate on forest cover, different lags
between climatic factors and forest EVI are set up and subsequently
their PCCs are calculated. Here, 14 different lags are tested, namely
1 month in advance, 2 months in advance, 3 months in advance, and ac-
cumulation of 2–12 months in advance. Their corresponding PCCs are il-
lustrated in Fig. 14. It can be observed that EVI is highly correlated with
temperature in current month. Precipitation in last month (one month
in advance) has higher PCC (0.343) with EVI than that in current month
(0.317). Pan evaporation with two months in advance shows higher
PCC (0.385) than that in currentmonth (0.017).With the increasing of ac-
cumulation lag (2–12 months), PCCs among precipitation, pan evapora-
tion and EVI increase gradually before falling down. Precipitation and
pan evaporation achieve the highest PCCs (0.460 and 0.515, respectively)



Fig. 15. Partial correlation coefficients among EVI and precipitation (a) and minimum temperature (b) on monthly scale.
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with EVI at the accumulation of 4 months in advance of EVI. The results
imply that precipitation and pan evaporation have lag effects
(4 months) on forest EVI, while temperature has no lag effect.

4.3.3. Partial correlation analysis of EVI and climatic factors on pixel scale
Due to the lack of pan evaporation data on pixel size, here, only pre-

cipitation and temperature are used for partial correlation analysis with
EVI. Besides, compared with Tmean and Tmax, Tmin shows higher PCC
with EVI on bothmonthly and annual scales. Thereby, partial correlation
analysis among minimum temperature, precipitation and EVI is finally
implemented on monthly and annual scales.

Based on the mean monthly data, Fig. 15 presents the spatial distri-
bution of partial correlation coefficients (PCCs) between EVI and precip-
itation as well as minimum temperature on monthly scale. In contrast,
based on the mean annual data, Fig. 16 shows their PCCs on annual
scale. In general, PCCs onmonthly scale are higher than those on annual
scale. PCCs between EVI and minimum temperature are higher than
those betweenEVI and precipitation on both annual andmonthly scales.
Itmight partially because EVI ismainly dependonnear-infrared and red
bands, not as independent as precipitation (Fang et al., 2018). On the
Fig. 16. Partial correlation coefficients among EVI and precipit
other hand, it is consistent with existing findings that energy-limited
area where vegetation cover increased generally experienced decreases
in precipitation (Donohue et al., 2009).

Specifically, on monthly scale (Fig. 15), PCCs between EVI and
precipitation are positive for almost all pixels, with lower PCCs (0–0.2)
in high altitude areas. In contrast, EVI and minimum temperature show
relative high positive PCCs over all the pixels, without large spatial differ-
ence. Statistically, 69.9% of the studied pixels exhibit that their PCCs be-
tween EVI and precipitation range from 0.2–0.4; the pixels with PCCs
between EVI and precipitation lower than 0.2 account for 28.1%; pixels
with PCCs betweenEVI andminimumtemperature large than0.8 account
for 97.3%.

On annual scale, both positive and negative correlations among EVI
and climatic factors (precipitation and minimum temperature) exist
across the study area. Statistically, 63.0% of the pixels show that PCCs
between precipitation and EVI range from 0 to 0.2; pixels with negative
PCCs account for 33.6%, concentrated in areaswith relatively high eleva-
tion and relatively high precipitation; the proportions of pixels with
PCCs between EVI and minimum temperature in the ranges of 0.2–0.4
and 0.4–0.6 are 48.3% and 20.9%, respectively.
ation (a) and minimum temperature (b) on annual scale.



Fig. 17. Scatter graph of mean temperature (a), precipitation (b) and EVI.
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4.3.4. Quantitative relationship among EVI and climatic factors
As presented in Table 4, climate factors and EVI exhibit a good

correlation on monthly scale, where temperature (especially for
minimum temperature) and precipitation are two dominant control
factors of EVI (referring to Section 4.3.2). Besides, due to the fact that
both mean temperature and minimum temperature show high par-
tial correlation with EVI and the data of mean temperature are
often easier to collect, mean temperature, precipitation are thus fi-
nally selected to establish the quantitative relationship with EVI.
On the other hand, the factor selection is also consistent with the
fact that water and energy are two key factors for vegetation growth,
where precipitation represents for water and temperature repre-
sents for energy.

To intuitively illustrate the relationships among EVI and climatic fac-
tors, Fig. 17 provides the scatter graph of EVI and precipitation, and
mean temperature (Tmean) on monthly scale. It can be observed that
EVI has high linear correlations with mean temperature and EVI keeps
a stable level at about 0.45 after precipitation is over a threshold of
about 200 mm/month.

Based on the monthly data and the above relations (Fig. 17), least
square method is used to establish the quantitative relationship
among EVI and climatic factors under different precipitation conditions,
which can be written as follows (Eq. (3)). The root mean square errors
are 0.0346 and 0.0277 for precipitation below and above 200 mm, re-
spectively.

EVI ¼ 0:0143 Tmeanþ 0:0091 Ln Pð Þ þ 0:414;Pb200 mm
0:0158 Tmeanþ 0:0757;P≥200 mm

	
ð3Þ

where EVI is enhanced vegetation index, Tmean represents the mean
temperature, P means precipitation.

5. Conclusion

In this study, we assessed the forest cover change responding to cli-
mate in a subtropical humid monsoon area in China, using Landsat im-
agery with human-induced land cover change effect excluded. Taking
the Qingliu River catchment as an example, the key findings are
summarized as follows. (1) Relative to forest cover in December 1988,
22.07% of the forest area has experienced land cover change including
both deforestation and reforestation. (2) EVI shows a significant in-
creasing (p b 0.01) trend over the entire period (1989–2014), with in-
creasing (p b 0.05) during 2001–2014 before decreasing (p N 0.05)
during 1989–2000. (3) The spatial distribution of EVI is distinct in sum-
mer and growing season. (4) EVI and minimum temperature show
higher correlation than those between EVI and precipitation, which is
consist with findings in other energy-limited areas. (5) Precipitation
and pan evaporation showed accumulative lag effects (4 months) on
forest EVI, while temperature has no lag effect. (6) Threshold of precip-
itation at 200mm is identified. Quantitative relationship among EVI and
climatic factors is established under different precipitation conditions.

Due to the exclusion of the effect of human-induced land cover
change and the high resolution of the Landsat data, the proposed frame-
work provides amore preciseway to assess the climate impact on forest
cover. The proposed framework is also applicable for assessing climate
change impact on other vegetation types in other areas. The findings
should provide scientific support for local forest management and eco-
system services, and also lay foundations for hydrologic effect assess-
ment of forest cover change induced by climate change.
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